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The present numerical simulation explores a thermal-convective mechanism for 
oscillatory thermocapillary convection in a shallow rectangular cavity for a Prandtl 
number 6.78 fluid. The computer program developed for this simulation integrates the 
two-dimensional, time-dependent Navier-Stokes equations and the energy equation by 
a time-accurate method on a stretched, staggered mesh. Flat free surfaces are assumed. 
The instability is shown to depend upon temporal coupling between large-scale thermal 
structures within the flow field and the temperature sensitive free surface. A primary 
result of this study is the development of a stability diagram presenting the critical 
Marangoni number separating the steady from the time-dependent flow states as a 
function of aspect ratio for the range of values between 2.3 and 3.8. Within this range, 
a minimum critical aspect ratio near 2.3 and a minimum critical Marangoni number 
near 20000 are predicted, below which steady convection is found. 

1. Introduction 
Thermocapillary convection is fluid motion driven by surface tension differences 

resulting from thermal gradients along a fluid’s free surface. For many fluids, surface 
tension is a decreasing function of temperature, hence, warm regions of fluid yield to 
cooler regions to generate a surface flow. Although, previous experimental and 
theoretical studies have shown the existence of steady and time-dependent convection 
states, the present study is the first to obtain solutions for unsteady surface tension 
driven flow (using the flat free surface) producing estimates for the critical Marangoni 
number, Ma,, as a function of aspect ratio, Ar. In the present paper, Mu, refers to the 
Marangoni number for the onset of oscillatory motion. 

Recent attention to the thermocapillary problem has been spawned by the prospect 
of containerless materials processing in the low-gravity environment. Specifically, 
containerless growth of semiconductor crystals in space has been considered as a way 
to reduce convection in crystal melts and to avoid contamination from crucible walls. 
As buoyant forces are reduced, however, thermocapillary forces remain as the 
dominant mechanism to drive fluid motion. It is, therefore desirable to understand 
parameter ranges within which different thermocapillary flow states will exist in order 
to improve control of the fluid environment surrounding a growing crystal. Specifically, 
it is important to understand under which conditions a thermocapillary flow will 
exhibit time-dependent behaviour. 

A rich body of experimental data describing the nature of time-dependent 
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thermocapillary convection are available for the cylindrical floating half zones 
confirming the existence of the oscillatory time-dependent state and showing that the 
mechanism for oscillation is independent of buoyancy. Using fluids with Prandtl 
numbers Pr, of order 10, Velten, Schwabe & Scharmann (1991) have experimentally 
estimated Ma, to be of order lo4 and have demonstrated a dependence of Ma, on Ar. 
Experimental studies have also indicated a strong Pr dependence of the oscillatory 
state. For silicon oils with 100 < Pr c 400, Chun (1980) found that the onset of 
oscillatory convection could be related to the development of an S-shaped temperature 
profile along the thermocapillary surface. As a precursor to oscillation, however, this 
profile was not observed experimentally by Jurisch (1990) in liquid metals having 
Pr = 0.025. Additional distinctions between oscillatory thermocapillary flows at large 
and small Pr were demonstrated by Velten et al. (1991). Their work showed that two 
distinct modes of instability may be observed depending upon the Pr of the test fluid. 
In a cylindrical floating half zone, the preferred mode of oscillation for materials with 
Pr < 50 is an azimuthally travelling disturbance, whereas, the preferred mode of 
oscillation for materials with Pr > 50 is an axially travelling disturbance. Kamotani, 
Ostrach & Vargas (1984), however, have demonstrated that azimuthal periodicity is 
not a mechanistic requirement for oscillations in fluids of Pr < 50. After bisecting a 
cylindrical floating half zone of hexadecane (Pr = 42) with a thin plastic plate thereby 
removing azimuthal periodicity, oscillatory flow was observed in each of the resulting 
semi-circular columns. 

Among the theoretical investigations of the oscillatory thermocapillary phenomena, 
Smith & Davis (1983) used the analytic profile for steady, parallel, thermocapillary 
flow in a long, thin, rectangular cavity developed in the asymptotic analysis by Sen & 
Davis (1982) as a basic state for their linear perturbation analysis. Arguing that a 
thermal-convective mechanism for the oscillatory instability will be insensitive to 
surface deformation, Smith & Davis (1983) retain the flat free-surface assumption. An 
infinite Ar is also assumed. Their results qualitatively reproduced the seemingly 
disparate characteristics of oscillatory thermocapillary convection observed in 
experiments. The linear study by Smith & Davis (1983) together with the weakly 
nonlinear analysis by Smith (1988) discloses that the thermocapillary system is most 
susceptible to an oblique unsteady hydrothermal wave whose angle of propagation 
relative to the basic state was a function of Pr. The angle of propagation of this oblique 
hydrothermal wave is nearly perpendicular to the basic state for low Pr materials and 
is nearly parallel to the basic state for high Pr materials. Thus the azimuthal 
dependence of low Pr fluids and the axial dependence for high Pr fluid of the 
thermocapillary oscillations is predicted in accordance with experimental findings 
(Velten et al. 1991). The study of Smith & Davis (1983) using the thermal-convective, 
rectangular cavity model indicates that the relevant physics can be captured by the flat 
free-surface assumption. Their parallel flow and infinite Ar assumptions, however, do 
not apply to finite cavities. 

The energy stability analysis by Shen et al. (1990) underscores the need to account 
for endwall effects. They consider an axisymmetric half-zone of finite length using the 
flat free-surface assumption. They compare their predictions of Ma, for a Pr = 1 fluid 
against the experimental results of Preisser, Schwabe & Scharmann (1983) for a Pr = 
7 fluid and show good agreement. In contrast, Xu & Davis (1984) present perturbation 
analysis results for a similar system of infinite Ar which differ from experiment by 
nearly two orders of magnitude. 

Although the energy analysis and linear perturbation techniques may capture Ma,, 
they cannot show the thermal-convective origin of the surface perturbation instigating 
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the oscillatory response nor the supercritical evolution of the instability. These can be 
addressed by full numerical simulation to give a complete description of the oscillatory 
thermocapillary response. 

Full numerical simulations of thermocapillary convection in a square cavity have 
been provided by Zebib, Homsy & Meiburg (1985) and Carpenter & Homsy (1990). 
These studies have confirmed the boundary-layer structure of thermocapillary flows 
inferred from asymptotic studies, however, no link to time-dependent thermocapillary 
convection states could be found. Carpenter & Homsy (1990) considered the linear 
stability of their numerical solutions over a broad range of Pr at Mu well beyond the 
critical 20000 to 30000 estimated by the experiments of Preisser et ul. (1983) and 
Kamotani et al. (1984) and found no unstable modes; however, they did not consider 
the effects of cavity aspect ratio. Ben Hadid & Roux (1990) also sought time- 
dependence in a layer of a Pr = 0.0 15 fluid over a range of Ar and found no evidence 
of oscillatory behaviour. Their low-Prandtl-number fluid, however, is expected to 
behave differently to the Pr = 6.78 material used in the present study. 

Other studies in the literature address time-dependence in the context of 
buoyant/thermocapillary convection. Among these Ben Hadid & Roux (1 992) consider 
a Pr = 0.015 fluid, and Villers & Platten (1992) consider time-dependence in acetone 
both experimentally (Pr = 4.24) and numerically (Pr = 4.0). This interaction between 
buoyant and thermocapillary forces is not the primary focus of this work. 

The present work provides a fully nonlinear direct numerical simulation of 
oscillatory thermocapillary convection for a Prandtl number 6.78 fluid focusing on the 
thermal-convective mechanism considered by Smith & Davis (1983). Oscillatory 
convection is found in this fluid layer using the flat free-surface assumption. Through 
our simulations, the transition between stationary and oscillatory convection is 
extensively investigated; a stability diagram is developed presenting the critical (Ar, 
Ma) combinations separating time-dependent from steady thermocapillary flows. In 
addition, a physical description of the thermocapillary oscillation is provided relating 
the temporal interaction between large-scale thermal structures and the temperature- 
sensitive free surface. 

2. Mathematical formulation 
We consider an incompressible fluid with a flat free surface filling an open, two- 

dimensional rectangular cavity under zero-gravity conditions. A schematic of this 
model is presented in figure 1. Although some deformation of the fluid free-surface is 
anticipated under these conditions, both Smith & Davis (1983) and Shen et al. (1990) 
have shown that the flat free-surface assumption captures the relevant physics. Also, 
Smith & Davis (1983) have shown that the anticipated mode of instability for our 
Pr = 6.78 fluid is a travelling oblique roll with primarily transverse character which 
can be captured by the two-dimensional model. We further assume that the bounding 
cross-flow walls are far from the location of the chosen cross-section so that three- 
dimensionality from viscous interactions with these walls will be weak. 

The left and right walls of the cavity are heated and cooled, respectively, while the 
bottom of the cavity and the free surface are insulated. The aspect ratio of the cavity, 
Ar, is defined as the ratio of the length of the cavity, L,, to the depth of the fluid layer, 
L,, and is written Ar = L,/L,. 

The mathematical equations governing this system are the incompressible 
Navier-Stokes equations together with the thermal energy equation. In non- 
dimensional form, these are written 
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Insulated flat free surface 

Insulated bottom 
No slip, impermeable boundaries 

FIGURE 1. Model schematic of the thermocapillary Cartesian cavity with aspect ratio, Ar. The left- 
hand and right-hand sidewalls are heated and cooled, respectively, while the bottom and free surface 
are insulated. A flat free surface is enforced. 

Continuity 

Momentum 

Energy 

w-u = 0, 

Pr Du 
Dt Ma 
- _  - -Vp+-VZu, 

where the non-dimensional variables u, 8, and p ,  represent the velocity vector, 
temperature, and pressure, respectively. The characteristic quantities selected for the 
non-dimensionalization are the horizontal lengthscale, L,, the sidewall temperature 
difference, AT = Thot - cold, and the thermocapillary velocity, V ,  = vT AT/p. From 
these, the characteristic timescale is defined as L,. V,, and the non-dimensional 
temperature is defined as 0 = ( T -  Tavg)/AT, where T,,, = +(Tho,+ cold). The thermo- 
physical properties appearing in the formulation of the present problem are the 
dynamic viscosity, p, the kinematic viscosity, v, the thermal diffusivity, K, and the 
thermal coefficient of surface tension, cT. 

At each solid wall of the cavity, no-slip and impermeability conditions are enforced 
on the tangential and normal velocity components. These are written 

u = 0. (4) 

v = 0, (5) 

At the upper free surface, y = h-', the kinematic constraint, 

is imposed on the vertical velocity, and the shear stress balance is satisfied by the 
horizontal velocity, u. This tangential stress balance is written 

and may be interpreted as a balance between shear stresses at the free surface and 
thermocapillary stresses along the surface. Shear contributions from the passive gas 
bounding the fluid system have been neglected. 

The isothermal sidewall conditions representing a hot left wall and a cold right wall 
are written 

8 = [1/2, 1/21 at x = [0,1], (7)  
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Shear driven cavity (mesh resolution) 

W C I  

*Kim & Moin (1985) 
Re, Peltier & Biringen Biringen & Danabasoglu **Ghia et al. (1982) 

1 0.0992 (33 x 33) 0.0992 (33 x 33) 0.099* (65 x 65) 
400 0.1 11 (33 x 33) 0.107 (33 x 33) 0.1 14** (257 x 257) 

Thermally driven cavity (mesh resolution) 

Wrnazl 

Ra Peltier & Biringen Biringen & Danabasoglu de Vahl Davis (1983) 

105 9.58 (33 x 33) 9.78 (33 x 33) 9.612 (benchmark) 
TABLE 1. Comparison of shear driven cavity and thermally driven cavity calculations. The 
streamfunction at the core of the primary vortex, I$J, and the maximum streamfunction, are 
compared. 

while the insulating conditions at the top and bottom of the cavity are 

ae 
- = 0 at y = [O,Ar-l]. 
aY 

The general, flat free-surface, thermocapillary problem is completely described by 
the Marangoni, Ma, and Prandtl, Pr, numbers which reflect the contributions of 
thermocapillarity and viscous to thermal diffusion. Their definitions are 

gT ATL, V 
M U  = , P r = - .  

P K  K 
(9) 

The thermocapillary Reynolds number, Re, is sometimes used instead of the Marangoni 
number to parameterize thermocapillary results. This parameter is defined as Re = 
Mu/Pr. For data presentation, the streamfunction, $, integrated Nusselt number, Nu, 
and surface Reynolds number, Re,, information are extracted from the calculated 
velocity and temperature fields. The definitions for these quantities are 

y- - -v, 
ax 

(12) us JL and Re, = -, 
V 

where u, is a surface velocity. With insulating conditions at the top and bottom, the 
integrated Nusselt number across the cavity must be constant for time-independent 
solutions. For these cases, the measure of convergence that we have considered is the 
root-mean-square value of the difference between two successive (in time) values of the 
horizontal velocity; convergence is assumed when this quantity becomes less than lo-'. 
For simulations resulting in oscillatory responses, convergence is determined by the 
approach to a statistically steady state. A measure of this condition is the amplitude 
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differences of a field variable over each period of oscillation scaled by its average 
magnitude also over the period of oscillation. Statistical convergence is assumed when 
this value becomes less than lo-'. 

3. Solution procedure and code validation 
The governing equations are solved on a stretched, staggered mesh using second- 

order finite differences and time-splitting. Detailed descriptions of the time-splitting 
scheme and of the spatial descretization of the nonlinear convective terms are given by 
Biringen & Danabasoglu (1989), Kim & Moin (1985), and Le & Moin (1991). 

The implicit Crank-Nicolson method is used to temporally discretize the linear 
diffusive terms, and the explicit, three-step, third-order Runge-Kutta time ad- 
vancement (Le & Moin 1991) is implemented for the nonlinear convective terms. All 
the spatial derivatives are approximated by second-order central finite differences. 
Previous numerical simulations of cavity flows (Kim & Moin 1985; Biringen & 
Danabasoglu 1989 ; Huser & Biringen 1992) have conclusively demonstrated that for 
the time-stepping procedure employed in the present work, central differences used on 
the convective terms do not cause any numerical oscillations even at high Reynolds and 
Rayleigh numbers. 

Use of the Runge-Kutta advancement relaxes the convective stability constraint 
allowing stable computations at larger Courant numbers (thereby larger timestep 
increments) than methods like Adams-Bashforth extrapolation. Each time ad- 
vancement, however, requires the integrating of the governing equations three times, 
thereby tripling the CPU expense of the scheme. Experience with the RungeKutta 
method has shown that a ten-fold increase in the timestep over that dictated by explicit 
stability considerations may be realized without degrading the accuracy of the 
numerical solutions, therefore, the overall increase in CPU efficiency for the 
Runge-Kutta method is approximately a factor of three. 

The Helmholtz equations and the pressure Poisson equation resulting from the 
above discretization are solved using the tensor product (eigenvalue decomposition) 
technique. Complete details of this solution procedure are found in Peltier, Biringen & 
Chati (1990) and Huser & Biringen (1992). 

Each calculation is started using the results of a previously converged solution of a 
nearby parameter set as an initial guess accelerating convergence to the new 
statistically steady state. Sensitivity of the final solution to the initial conditions is 
checked by also converging some solutions from a quiescent velocity profile and a 
conductive thermal profile. Identical solutions were found. 

Timestep increment independence is assured by decreasing the timestep size between 
solutions until the maximum absolute value of the streamfunction stabilized to 6 digits. 
In addition, grid resolution independence is checked by comparing solutions on a 
coarse grid with solutions on a finer grid. Within this work, coarse grid resolution 
refers to a 45 x 45 mesh with a cosine stretching in each direction, and high-grid 
resolution refers to a 63 x 63 mesh also with a cosine stretching in each direction. For 
example, a highly resolved layer would have a 63 x 63 mesh resolution with a minimum 
Ax of 6.4 x 

The accuracy of the numerical code is established by comparing driven cavity 
solutions with previously published results. Table 1 compares results for shear driven 
cavity and thermally driven cavity calculations against results presented by Biringen & 
Danabasoglu (1989) including the results of Kim & Moin (1985) and the benchmark 
calculations of Ghia, Ghia & Shin (1982) and de Vahl Davis (1983). Very good 

and a minimum Ay of AxAr-l. 
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Thermocapillary driven cavity (mesh resolution) 
Pr = 1, Re = 10000 Pr = 30, Re = 2000 Pr = 50, Re = 1000 

C&H (1990) P&B C&H (1990) P&B C&H (1990) P&B 
(74 x 74) (31 x 31) (74 x 74) (74 x 74) (64 x 64) (74 x 74) 

+min 3.23 x 3.24 x 2.24 x lo-% 1.82 x 1.77 x 1.44 x 
ucore  6.97 x lo-' 7.29 x lo-' 7.71 x lo-' 6.53 x lo-' 7.57 x lo-' 6.01 x 
'mid 2.96 x lo-' 3.06 x lo-' 2.00 x lo-' 1.61 x lo-' 1.43 x 1.16 x lo-' 

0.0 4.36 4.30 6.53 7.14 5.77 6.09 
Nu 0.5 4.33 4.36 6.40 6.71 5.79 5.84 

1 .o 4.40 4.44 6.84 6.69 5.82 5.76 
TABLE 2. Comparison of thermocapillary driven cavity calculations with the results of 

Carpenter & Homsy (1990). 

agreement is found in both cases verifying the accuracy of the solution procedure. The 
thermocapillary driven cavity is considered in table 2, and the results are compared to 
calculations by Carpenter & Homsy (1990) for Prandtl numbers 1, 30 and 50 
providing very good agreement. For all the computations reported in this paper, the 
solution procedure satisfies divergence-free velocity field to machine accuracy. 

4. Results and discussion 
The present parametric results are organized into four sections. The first section 

presents a stability diagram for pure thermocapillary convection as a function of 
Marangoni number, Ma,  and aspect ratio, Ar, which separates a regime of oscillatory 
thermocapillary response from steady thermocapillary flows. Special interest is focused 
on a range of parameters arising in this diagram that have double valued stability 
limits. The second section offers a description of the physical process sustaining time- 
dependent thermocapillary convection and the third section offers a quantitative 
summary of the related surface effects. The final section considers physical 
interpretation of the stability diagram for example fluids. 

We reduce the parameter space spanned by this study to a subset of (Ar ,Ma)  by 
restricting ourselves to a fluid with Pr = 6.78 which is representative of a large number 
of materials used in experiments. For example Velten et al. (1990) have often used 
sodium nitrate NaNO,, with a Pr of 8.86 and Villers & Platten (1992) have used 
acetone with a Pr between 3.73 and 4.25. It should be noted that the same unsteady 
mechanism was revealed for a Pr = 23.0 fluid which is discussed by Peltier & Biringen 
(1992). Consequently, we can assert that these mechanisms can generalize to a range 
of Pr. 

For the following discussion, a cavity of fixed length is assumed, hence, Ar reflects 
the depth of the fluid layer. Since the independent control parameter in Ma is the 
product ATL,, changes in M a  reflect corresponding changes in AT which drives the 
thermocapillary flow. 

4.1. The stability diagram 
To construct the stability diagram, critical (Ar,  Ma)  combinations separating steady 
from time-dependent thermocapillary response regimes are found using the stream- 
function, $, data from super-critical simulations. In the oscillatory regime, time- 
dependent thermocapillary flow is characterized by a primary convection cell 
throughout the oscillation cycle. Using ?,hmtn and to denote the minimum and 

12 FLM 257 
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maximum values of $ at the core of this cell over the oscillation cycle, the fluctuation 
amplitude, A$, is defined as - @man), and the average strength, $AvG, is defined 
as :($muz + As the critical value of either Ar or Mu is approached from within 
the unsteady regime, A$ decreases, becomes zero at the critical curve. This approach 
is valid when the bifurcation is supercritical, which is the case in the present work. Thus 
a scheme to predict the critical value of Mu, Mu, is constructed by quadratic 
extrapolation of (Ma,  A$) data to A@ = 0 for a fixed Ar. Similarly, for a fixed Ma, the 
critical Ar is found by extrapolation. We base this scheme on the parameter A$ since 
we can calculate this value with a high degree of certainty and since it provides a 
measure of the strength of the oscillation. This procedure is similar to the scheme used 
by Pulicani, del Arc0 & Peyret (1990) to predict the critical Grashof number for the 
onset of oscillatory buoyant convection in liquid metals. The accuracy of the predicted 
critical parameters is validated by spot-checking (Ar,  Mu) combinations near the 
estimated critical value. 

The $ data from a large number of time-dependent simulations were collected and 
a representative subset is presented in table 3. Since the characteristic velocity scales 
and timescales are functions of Mu, here, and in the rest of this work, @ data and the 
period of oscillation, 17, have been scaled by Mu and Ma-', respectively, to remove the 
Mu dependence. The $ data presented are derived from time histories over an 
oscillation cycle. An example is offered in figure 2 which presents the ninth and tenth 
periods of oscillation for the simulation corresponding to the (Ar, Ma) parameter 
combination (2.6, 50000). Dotted lines are used to bound $muz and $min which are 
incident with the maxima and minima in both periods showing that the flow field has 
reached a statistically steady state. Since the cell has a negative sense of rotation, $min 
denotes the instant of greatest strength, and emaZ denotes the instant of least strength. 
The time difference between successive maxima in the $ time history defines 17. 

Successive maxima in the @ history are also used to define a coordinate system for 
temporal data. The instants 0 and 2n are defined to correspond to the maxima in the 
oscillation cycle, and n is equally spaced in time from these instants. Since temporal 
asymmetry exists in the evolution of the primary convection cell, n does not correspond 
to the position of maximum strength. The asymmetry, however, is weak, and instant 
n: is rarely far from the position of maximum strength. In table 3, values of the 
maximum and midpoint surface Reynolds number on the fluid free surface at instant 
n in the oscillation cycle are also presented. One other quantity, xg, is tabulated which 
is defined later in this discussion. 

Typically, the evolution to a statistically steady solution, figure 2, is characterized by 
long transients. Experience has shown that to converge a flow field using the results 
from a nearby supercritical parameter set as initial conditions, approximately nine 
periods of oscillation are required before a true statistically steady state is reached. The 
minimum number of cycles necessary to converge a flow field increases with increasing 
Mu. The uniqueness of the solutions was verified by converging the extreme 
thermocapillary case, (3.8, 135200), from both the results of a nearby parameter set 
and from a conductive thermal profile and a quiescent velocity field. Identical solutions 
were obtained. The possibility of hysteresis with respect to time-dependence was also 
explored by simulating the near critical parameter set (Ar,  Mu) = (3.4, 40000) using 
both oscillatory and steady initial conditions. Again, identical solutions were found; 
thus, to within the resolution of this numerical approach, hysteresis is not predicted. 

When possible we chose to use previous unsteady solutions as initial conditions for 
new runs, since the integration time required to reach either statistical or absolute 
convergence of the new solution was significantly shorter than if we had used the 
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7t 27t 

vmax 

k i n  

0 0.0073 0.0147 
Time 

FIGURE 2. Time history of the core strength of the primary convection cell over approximately 
two periods of oscillation for the oscillatory (Ar, Ma) parameter combination (2.6, 50000). 

Ma Ma Ma n / M a  MaRe, MaRe, 
Ar ( x  $AvG A$ ( x  lo3) xg (Max) (Mid) At Grid 
2.6 30 37.17 6.486 9.310 0.578 493.4 18.11 0.049 45x45 

40 48.16 10.90 8.234 0.603 645.4 34.95 0.051 45x45 
50 57.53 13.48 1.344 0.652 774.4 87.35 0.051 45x45 
60 64.69 12.21 6.588 0.711 895.7 124.4 0.051 45 x45 
65 67.98 11.60 6.262 0.735 957.6 137.3 0.055 45x45 
70* 69.80 4.953 5.736 0.770 1028.0 139.4 0.055 45x45 
75* 73.13 1.871 5.339 - - - 0.056 45x45 

100* 90.88 0.03660 4.225 - - - 0.065 45x45 
3.8 50 41.09 4.204 3.798 0.397 726.3 19.82 0.020 63x63 

60 47.84 7.536 3.583 0.471 848.1 33.03 0.050 45x45 
75 58.18 12.49 3.417 0.475 976.5 0.4800 0.050 45 x45 

135.2 93.71 34.49 3.370 0.500f 1935.0 83.48 0.025 63x63 
* This simulation represents a decaying solution which was not converged to statistically steady 

t Approximate value. 
A complete table for other Ar is available from the authors. 

state. Values for $AVG and A$, therefore, are lower and upper bounds, respectively. 

TABLE 3. Tabulated data for unsteady simulations of a Pr 6.78 fluid; the $.,,, is the average core 
strength of the primary convection, A@, is the fluctuation amplitude, ZZ is the period of oscillation, 
Re, is the surface Reynolds number (based on either the maximum surface velocity, u,,,, or the mid- 
point surface velocity, urnid, at instant IT) and At is the computational timestep. Streamfunction data 
have been scaled by MQ and I7 has been scaled by Ma-'. 

results of a steady calculation as initial conditions. This behaviour arises from a very 
long integration time between the onset of the oscillatory disturbance and its reaching 
appreciable amplitude. 

The approximate stability diagram separating regions of time-dependent thermo- 
capillary response from steady thermocapillary flows constructed from the results of 
fully nonlinear numerical simulations is presented in figure 3. Here, the contours 
represent constant A+ at contour intervals of 5.0 as functions of Ar and Ma for Ar up 
to 3.8. The critical curve corresponds to the zero contour. In figure 3, simulated 
parameter combinations are shown as open and filled circles where open circles denote 
steady solutions and filled circles denote time-dependent solutions. 

Surprisingly good agreement is found between values of Ma, along the lower branch 
of the stability curve (20000 to 40000) and the experimental results of Preisser et al. 
(1983) and Kamotani et al. (1984) which estimate Ma, to lie between 20000 and 30000. 
Their data represent predictions for a floating half-zone where the effects of gravity 

12-2 
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8x104 

6x104 

4x lo4 

Ma 2~ lo4 i 
I I I I 

2.0 2.5 3.0 3.5 
Ar 

FIGURE 3. Stability diagram contouring the fluctuation amplitude of oscillation as a function of the 
combination (Ar,  Mu). The zero contour represents the critical curve, and the contour interval is 5.0. 

were minimized both by the small scales of the experiments and by the imposition of 
a stabilizing temperature gradient. This agreement suggests that the mechanism for 
instability is similar for the two geometries. The stability diagram also predicts that 
square cavities (Ar = 1.0) will not be susceptible to oscillatory behaviour which 
rationalizes the inability of Carpenter & Homsy (1990) to find oscillatory responses for 
square cavity simulations at comparable Pr. 

The most interesting characteristic of the stability curve is that, over a range of 
parameters, it is double valued (i.e. it has both a lower and an upper branch). Within 
this range, a transition between steady and time-dependent thermocapillary flow will 
be experienced for both low and high values of the control parameter. Also within the 
parameter ranges investigated, time-dependence is not found below a critical Ar near 
2.3 nor below an Ma, near 20000. The upper branch of the stability diagram rises 
steeply with increasing Ar and may not exist above a second critical Ar near 3. The 
upper arm of the stability diagram will be discussed later in the text. 

Susceptibility of a fluid system to time-dependence can be read from the stability 
diagram. For example, in an Ar = 2.6 cavity having sidewalls with equal temperatures, 
a quiescent state is expected. Increases in A T  will drive steady thermocapillary flows, 
A$ = 0, until a transition to time dependence, A+ > 0, is experienced near Ma = 
23000. Above this Mu,, the flow becomes oscillatory. Further increasing Mu, A$ 
reaches a maximum near Ma = 50000. Above this value, increases in Mu lead to 
decreases in A$ until near Ma = 80000, A+ = 0, and steady thermocapillary 
convection returns. 

Evolution of $AvG, A$, and 17 for this series is presented in figure 4. A near linear 
dependence between $AvG and Mu is demonstrated in figure 4(a). This trend is 
consistent both in the time-dependent and steady regimes and is a direct consequence 
of the thermocapillary forcing, equation (7), on the temperature gradient at the free 
surface. Since larger values of Ma reflect larger AT and greater thermocapillary forces, 
increases in the convection strength are expected. Values of A$ over the range of Ma 
are shown in figure 4(b). Extrapolations of the lower and upper values of Ma, from 
these data points yield estimates 24000 and 77000, respectively. Finally, in figure 4(c), 
17 is shown to decrease as A T  is raised. This behaviour of 17 is indirect support that the 
thermal perturbation responsible for the oscillatory thermocapillary response is 



Time-dependent thermocapillary convection in a Cartesian cavity 349 

0 1  I 

30 50 70 90 

M~ (X 10-3) 
FIGURE 4. Simulation data as a function of the Marangoni number for aspect ratio 2.6: (a) average 
core cell strength, +,,,, (b) fluctuation amplitude, A@, and ( c )  period of oscillation, IZ. e, measured 
data points. In this figure, A$ and I7 are scaled by Mu as in table 3. 

convective in nature. For a constant Ar cavity, the size of the primary convection cell 
is fixed, and increased strength of convection leads to decreased cell turnover time. 
Thus, the frequency of a convective perturbation is expected to increase in agreement 
with the shortened 17 observed. 

A very similar behaviour is found for the time-dependent response of a fluid system 
at constant AT and decreasing Ar.  Variable Ar can be achieved in an open cavity by 
addition of fluid to the fluid layer. According to the stability diagram, figure 3, steady 
thermocapillary convection is expected for a thermocapillary layer of Ar = 3 .  
Decreasing Ar by addition of fluid results in steady flow until a transition to time- 
dependence is experienced near Ar = 2.8. Below this critical Ar, A@ grows in amplitude 
until a maximum is reached near Ar = 2.5. Further decreases in Ar lead to decreases 
in A$ until near Ar = 2.3, A$ = 0, and steady thermocapillary convection returns. The 
@ data for a representative parametric study of Ar with Ma = 30000 is presented in 
figure 5.  As before, pAvG, A$, and 17 are plotted in figures 5(a)-5(c), respectively. 

increases with decreasing Ar. Since the AT driving the flow 
is constant, the increase in convection is probably due to lessened viscous effects from 
the bounding walls in deeper cavities. The response of A@ to the acceleration is similar, 
and the lower and upper critical values for Ar predicted from this curve are 2.8 and 2.3, 
respectively. An opposite response in I7 is observed. With increase @AVG, 17 increases. 
This response also can be explained by a convective temperature perturbation. As Ar 
is decreased, the cell turnover distance also increases; if the corresponding acceleration 
of the flow is too weak, a decrease in the frequency of perturbation is anticipated 
leading to an increase in 17. 

The magnitude of 
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FIGURE 5. Simulation data as a function of the aspect ratio for Marangoni number, 30000: (a) 
average core cell strength, a+hAvc, (6) fluctuation amplitude, A+, and (c)  period of oscillation, 17. . ... - 
0 ,  measured data points. 

FIGURE 6.  Stream function contours (a) and isotherms (b) at contour intervals of 3.0 and 0.0625, 
respectively, over one period of oscillation for (Ar,  Ma) =S15 (2.6, 50000): samples from (i) in, 
(ii) x, (iii) in, and (iv) 2x. 
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FIGURE 7. Surface profiles of horizontal velocity (a) and temperature (b) for (Ar,  Mu) = (2.6, 50000) 
sampled at instants --, iz, ---, n, -.-, in and -.--, 271, in the oscillation period: (i) total 
quantity, (ii) average, and (iii) fluctuation from average. 

4.2. Physical description of the oscillation 
Comparisons of the streamfunction contours and isotherms at the parameter 
combinations representing the maximum A@, lower critical, and upper critical 
simulations demonstrate that a complete structural analogy exists in the evolution of 
flow with increasing Ma and with decreasing Ar. Thus the response of the 
thermocapillary system is concluded to be a function of the flow strength which is a 
function of Ar and Ma. 

Streamfunction contours and isotherms are presented in figure 6 for Ma = 50000 
leading to the maximum A+ at Ar = 2.6. The instants :n, .n, in, and 2.n are presented 
in figures 6(ik6(iv), respectively. Views of the flow structure at zero and 2.n are 
presented in figure 6(iv). This instant corresponds to the time of least strength in the 
cycle of the primary convection cell which has expanded to occupy the entire cavity. Its 
core is biased toward the hot wall in agreement with Carpenter & Homsy (1990) for 
steady thermocapillary flows in moderate Prandtl number fluids. At this instant, a 
monotonic temperature gradient exists along the free surface, figure 7 (b) (i), indicating 
that the thermocapillary surface forces are directed toward the cold wall. Thermal 
boundary layers are observed near both sidewalls with the extreme isotherm 
compaction observed at the junction between the free surface and the cold wall. The 
weaker thermal boundary layer near the junction between the free surface and the hot 
wall sustains a large convection cell. Near the cold wall, a local acceleration is driven 
by an extreme isotherm compaction. 

The clockwise sense of rotation of the primary cell allows cool fluid to be siphoned 
away from the cold wall along the bottom of the cavity. Near the hot wall, this cool 
stream is deflected upward satisfying continuity and creating a cool finger which 
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interacts with the thermocapillary surface from below. This cool finger maintains the 
thermal gradient near the hot wall. 

For this parameter combination, the cool finger is sufficient to generate a thermal 
perturbation (local cooling) on the surface which instigates the oscillation. In response 
to the strengthened temperature gradient, the primary convection cell retracts toward 
the hot wall and strengthens, figure 6(i). As shear forces from the primary cell weaken 
near the cold wall, a secondary convection cell with the same sense of rotation appears 
accelerated by thermocapillary responses to the isotherm compaction. An additional, 
tertiary convection cell with a counterclockwise sense of rotation appears, sustained by 
shear forces from the primary and secondary convection cells and a weak adverse 
temperature gradient. It will be shown, however, that neither the secondary nor the 
tertiary cells are mechanistic requirements for the oscillation. 

The primary and secondary convection cells strengthen until a maximum strength is 
reached (figure 6(ii)). In this flow field, two actions tend to re-establish the single-cell 
state. First, without being replenished by new fluid siphoned fron. '' cold wall, the 
cool finger warms, and its influence on the surface is diminis __. For this high- 
amplitude oscillation, a retraction of the cool finger is observed. Secondly, the 
increased strength of the primary cell pulls warm fluid from the hot wall extending the 
influence of thermocapillary forces closer toward the cold wall and allowing its 
expansion in this direction. 

The secondary convection cell pulls cool fluid from the cold wall and ejects this fluid 
upward toward the thermocapillary surface. The surface is cooled, and the driving 
force for the secondary cell is diminished. Through this action, the secondary cell helps 
to extinguish itself, and the expansion of the primary convection cell is augmented. By 
instant in presented in figure 6(iii), the single cell state has been firmly reestablished, 
and the formation of a new cool finger begins. 

4.3. Quantitative description of surface eflects 
Surface profiles for the non-dimensional horizontal velocity, u, and temperature, 8, 
sampled at instants in, n, :n, and 27t are presented in figure 7. A profile of the total 
quantity is presented in figure 7(i) whereas the average profile, subscript s, and 
deviations from the average, subscript t ,  are presented in figures 7 (ii) and 7 (iii). Since 
this flow is thermocapillary driven, responses in u are directly related to the 
corresponding 0-profiles. The near-singular velocity cusp evident in figure 7 (a)  (i) is 
characteristic of thermocapillary flows discussed by Zebib, Homsy & Meiburg (1985). 
Although the velocity cusp resembles a discontinuity in the solution, the velocity does 
fall to zero as the wall is approached. For most parameter combinations, the velocity 
cusp is resolved (i.e. at least one grid point lies between the wall and the grid location 
of the cusp). For some simulations, however, the cusp is at the first grid location inside 
the domain. Although the cusp may not be fully resolved for these parameter 
combinations, mesh resolution studies have confirmed the adequacy of the chosen grid 
and have shown that this cusp has negligible impact on the rest of the flow. 

The oscillation described above relies on a tight coupling between sensitivity of the 
surface to cooling and the influence of the cool finger. One measure for the range of 
influence of the cool finger is extracted from the profiles of 8,. Surface profiles of 8, at 
instants i7t and in, figure 7(b) iii), show a characteristic intersection near zero. The 
horizontal location of this point is denoted xg and is tabulated in table 3. Consistency 
in the displacement of xo with increasing Mu suggests that this point may be associated 
with the thermal perturbation caused by the cool finger. The value of xo is plotted as 
a function of the Ma in figure 8 for the aspect ratio 2.6 simulations. A near linear 
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FIGURE 8. Horizontal location, x,, of the fluctuating temperature, O,, cross-over point as a 

function of the Marangoni number for aspect ratio 2.6. 

FIGURE 9. Streamfunction contours (a) and isotherms (b) at contour intervals of 3.0 and 0.0625, 
respectively, over one period of oscillation for (Ar, Ma) = (2.6, 70000): samples from (i) in, (ii) x ,  
(iii) $, and (iv) 2x. 

displacement of x, along the interface is evident with increasing Mu, figure 8, lending 
evidence to the idea that increased convection in the primary cell moves the most 
cooling sensitive region of the interface toward the cold wall and away from the 
influence of the cold finger. 

As convection increases and the influence of the cool finger on the surface is 
diminished, A$ decreases and the upper critical branch is approached. Results for the 
parameter combination (2.6, 70000) near the upper critical curve are presented in 
figure 9. Although strong secondary and tertiary cells are seen in the (2.6, 50000) 
simulation, time-dependent parameter combination (2.6, 70000) does not show these 
structures confirming that the secondary and tertiary cells are an effect of the specific 
convection field and are not mechanistic features of the oscillation. 

Near the upper branch of the stability curve, the nature of the thermocapillary 
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FIGURE 10. Surface profiles of horizontal velocity (a) and temperature (b) for (AT, Mu) = (2.6,70000) 
sampled at instants -, in, ---, n, -.-, tn and -. .-, 2n in the oscillation period: (i) total 
quantity, (ii) average, and (iii) fluctuation from average. 

response is dominated by the penetration of the primary convection cell deep into the 
cavity throughout the oscillation cycle. The time-dependence is characterized by small 
accelerations and decelerations of the primary convection cell caused by minute 
deflections of the surface temperature profile, figure 10 (b) (i), The existence of xo is also 
clearly seen in figure 10(b) (iii). 

At the upper stabilization near Ma, = 80000, the primary convection cell becomes 
so strong that the cooling sensitive region of the surface is moved beyond the influence 
of the cool thermal finger. The streamfunction contours and isotherms for simulations 
above Ma = 70000 differ only marginally from figure 9(ii). 

The geometry of the primary convection cell for high Ar simulations is bounded by 
the depth of the cavity; therefore, the ability of the cell to transport xo away from the 
influence of the cool finger is limited. This is clearly seen in the data for the Ar = 3.8 
simulations presented in table 3.  Here, xg stabilizes near 0.5 with increasing Ma and the 
upper arm of the stability diagram cannot exist. We project from our data that the 
critical Ar above which the upper arm of the stability diagram will not exist is near 3.  

Streamfunction contours and isotherms for the lower critical parameter combination 
(2.8, 30000) are presented in figure 11. The structural features obtained for oscillatory 
cases are also present in this figure. The lower branch of the stability curve is reached 
when the primary convection cell becomes sufficiently strong; for this condition. xg is 
closest to the hot wall (figure 8). 

4.3. Interpretation of the stability results for physical systems 
In this section, we interpret the stability results for layers of water, acetone, and sodium 
nitrate for the ranges of (Ar,  Mu) represented in figure 3. In particular, we concentrate 
on the Ar range between 2.3 and 3.8 and the Ma range between 3 x lo4 and lo5 within 
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FIGURE 11. Streamfunction contours (a) and isotherms (b) at contour intervals of 3.0 and 0.0625, 
respectively, for (Ar ,  Mu) = (2.8, 30000). 

which the oscillatory regime is found. The stability diagram was constructed for a Pr 
identical to the Pr for water, 6.78, however, the values of Pr for acetone and sodium 
nitrate, 3.73 and 8.86, are different. Still we expect that the behaviour of the stability 
diagram is approximately valid for these fluids. 

For a particular fluid, three-environmental variables are incorporated in an (Ar,  Ma) 
pair. These are L,, L,, and AT. Therefore, for a particular (Ar,  Mu) combination, there 
is only one independent variable. Also, the ratio of thermodynamic variables expressed 
in Ma is simply a constant of proportionality relating Ma to the environmental 
variables. For water, acetone, and sodium nitrate, this constant of proportionality is 
1.18 x lo6, 3.48 x lo6, and 1.17 x lo5, respectively. 

We assume that the Boussinesq equations are valid for AT < 4 "C, thus for a cavity 
38 mm long the oscillatory response could be explored experimentally using either 
water or acetone as the working fluid. For example, a layer of water would experience 
the evolution from transition to oscillatory convection through restabilization within 
a range of AT between 0.445 "C and 2.22 "C. The same effects for acetone would be 
found in the smaller range of AT between 0.151 "C and 0.753 "C. Since the independent 
parameter in the non-dimensionalization is the combination ATL,, a AT range of 
larger magnitude could be constructed for acetone by decreasing the length of the 
cavity. Sodium nitrate, on the other hand, would require a AT range between 4.51 "C 
and 22.5 "C which is beyond the acceptable bounds. If we fix AT at 3 "C, however, the 
transition to oscillatory convection through restabilization could be explored in 
cavities with lengths between 5.71 cm and 28.5 cm. Using acetone or water, however, 
cavities with lengths as small as 1.91 mm would be necessary to satisfy this AT. 

5. Conclusions 
The present study is the first to find oscillatory thermocapillary convection using full 

numerical simulation assuming a flat free surface. These results support the theoretical 
work by Smith & Davis (1983) considering a thermal-convective mechanism for 
instability by showing that a sustained oscillation can be elicited in the cavity without 
surface deformation. We also provide indirect support for the Pr dependence of the 
instability as described by Smith & Davis (1983). We were able to capture the 
oscillatory instability using a two-dimensional cavity and a moderate Pr working fluid. 
According to Smith & Davis (1983), the instability for a Pr = 6.78 fluid should 
propagate predominantly (nearly 80 YO) in the plane we consider. The corresponding 
instability for small Pr fluids is predicted to propagate perpendicular to the 
computational domain and would not be captured by our two-dimensional simulation. 
Ben Hadid & Roux (1990) sought time-dependence in such a two-dimensional cavity 
for a low Pr fluid and were unable to find oscillatory behaviour in agreement with 
Smith & Davis (1983). 

A stability diagram is developed for a Pr = 6.78 fluid demarcating a regime of time- 
dependent thermocapillary convection in (Ar, Ma) space. This diagram predicts both 
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a minimum critical Au near 2.3 and a minimum Mu, near 20000 within the parameter 
ranges spanned by this study. Below either of these values, steady convection will be 
observed for all parameter combinations. Over a range of parameters, both a lower 
branch and an upper branch of the stability curve are found. In these ranges, stability 
with respect to time-dependence is found for both low and high values of the control 
parameter. A second critical Ar is also suggested near 3.0 above which the upper 
branch of the stability curve may not exist. This is probably due to the influence of 
depth on the geometry of the primary convection cell. 

The lower branch of the stability curve predicts a range of Ma, between 20000 and 
40000 for Ar values between 2.3 and 3.8. This range of Ma, agrees well with 
experimental estimates ranging from 20000 to 30000 (Preisser et al. 1983; Kamotani 
et al. 1984). The dependence of Ma, on Ar has also been experimentally demonstrated 
(Velten et al. 1991). 

A complete analogy is found for the evolution of large-scale structures in the flow 
field with increasing Mu or decreasing Ar. These are related to increases in the strength 
of the flow with either increasing thermocapillarity or decreasing viscous dissipation. 

A description of the oscillatory instability is offered relating the temporal evolution 
of large-scale structures in the flow and their interaction with the temperature sensitive 
free surface. This description agrees with Smith (1986), however, here, the origin of the 
thermal perturbation at the free surface is related to the evolution of a cool finger of 
fluid from the cold wall convected beneath the large central eddy. For instability, the 
cooling sensitive region of the surface must lie within the influence of this cool finger, 
thus the cool finger alone is not sufficient to invoke oscillation. The transition to 
oscillatory thermocapillary flow occurs when fluid motion becomes sufficiently strong 
that the cool finger surfacing near the hot wall is able to influence the thermocapillary 
surface. 

Far from near-critical parameter combinations, large-scale structural changes over 
the oscillation cycle lead to high-amplitude oscillations. For these, the cavity 
decomposes into thermocapillary and inertially dominated regimes. The flow field is 
distinguished by primary, secondary and tertiary convection cells. 

For large Ar cavities, the dimensions of the primary convection cell are determined 
by the depth of the fluid layer. It is possible that the primary cell may not be able to 
transport the temperature sensitive region of the surface beyond the influence of the 
subsurface cooling. The upper branch of the stability curve would not exist for such a 
flow. This condition is suggested in the stability diagram by the second critical Ar near 
3.0 and is also supported by data for xg which probably corresponds to the position of 
the temperature sensitive regon of the interface. For the Ar = 3.8 simulations, x, 
stabilizes at a constant value near 0.5 with increasing Ma. 
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